Hindawi Publishing Corporation
BioMed Research International

Volume 2014, Article ID 439476, 11 pages
http://dx.doi.org/10.1155/2014/439476

Review Article

Applied Graph-Mining Algorithms to Study Biomolecular

Interaction Networks

Ru Shen' and Chittibabu Guda®*?

! Department of Computer Science, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
? Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, College of Medicine,

Omaha, NE 68198-5145, USA

? Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198, USA

Correspondence should be addressed to Chittibabu Guda; babu.guda@unmec.edu

Received 14 January 2014; Accepted 19 February 2014; Published 2 April 2014

Academic Editor: Altaf-Ul-Amin

Copyright © 2014 R. Shen and C. Guda. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems.
The identification of functionally relevant modules in PPI networks is one of the most important applications of biological
network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction
networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of
these computational methods, graph comparison and module detection are the two most commonly used strategies. This review
summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module
detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph
methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently

published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks.

1. Introduction

Recent advances in systems biology research have gener-
ated a wealth of data on physical and genetic interactions
capable of revealing relationships between biomolecules. For
example, high-throughput screening methods, such as two-
hybrid analysis [1] and mass spectrometry [2], have produced
volumes of data on protein-protein interactions (PPI). PPI
networks provide the basis for understanding the modular
organization of molecular interactions. Still, computational
algorithms are required to process this data for large-scale PPI
networks. Such networks provide the basis for understanding
the modular organization of molecular interactions. Ana-
lyzing PPI networks using graph-theory-based algorithms
and graph-mining methods has become commonplace in
systems biology research. Similarly, for comparative analysis
of PPI networks in cancer, both graph comparison and
module detection have been used to determine the structure
of networks [3]. Here, we review various graph comparison
and module detection algorithms that have been widely
used for analyzing PPI networks in different systems biology
applications.

The first group of algorithms of interest, graph compari-
som, is the process of comparing and contrasting graph-based
networks in order to determine the PPI network similarities
or detect common or distinct substructures (i.e., subnetworks
or subgraphs). Thus, graph-theory-based methods are widely
used in the comparative study of the molecular interaction
networks (MINs). These methods have been applied in
various studies and analyzed in previous review articles. For
example, in 2006, Sharan and colleagues published a review
of the applications of graph comparison methods to analyze
MINS [4]. In our paper, we focus on more current algorithmic
details of graph comparison methods. Our primary focus is
on the following two most widely published graph compari-
son algorithms: graph kernels and graph alignments.

The second group of algorithms, module detection,
involves the identification of functionally important sub-
structures within a larger PPI network, which is one of the
most widely studied topics in PPI network analyses. Con-
sidering that biological interactions do not operate based on
sequence homology between partners, sequence homology-
based methods such as Basic Local Alignment Search Tool

http://dx.doi.org/10.1155/2014/439476

(BLAST) [5] are generally not useful for detecting inter-
acting modules. Instead, network analysis has become a
key approach to understanding the functional relationships
between interacting proteins. Because subunits of a molecular
complex generally function towards a common biological
goal, predicting an uncharacterized protein as part of a
known complex increases the confidence in the annotation
of that protein [6]. Thus, detecting important modules in PPI
networks is a well-studied problem in graph analysis. In this
paper, we review the following five categories of module
detection methods: (1) seed-and-extend, (2) hierarchical clus-
tering, (3) optimization-based, (4) probabilistic, and (5) fre-
quent subgraph.

Graph comparison can be used to search conserved
regions representing functional, orthologous modules across
different species or biological systems. In contrast, module
detection algorithms can be applied to graph alignment to
find the optimal local alignment between protein networks
[7]. Sometimes, both types of algorithms are also used in
combination to perform PPI network analysis. For example,
finding the common PPI network modules in multiple cancer
networks requires the combination of graph comparison and
module detection algorithms [3]. Hence, graph comparison
and module detection are interrelated rather than isolated
topics. This paper is organized as follows. First, we review
graph comparison strategies that include graph kernel and
graph alignment methods. Next, we discuss module detection
strategies that include five subsections covering seed-and-
extend, hierarchical clustering, optimization-based, proba-
bilistic, and frequent subgraph methods. The final section
includes a summary of this review along with our conclu-
sions.

2. Graph Comparison Strategies

Graph comparison is an important tool for understanding
PPI networks. For instance, by measuring the discrepancy
between PPI networks of healthy and diseased individuals it
is possible to predict disease outbreak and progression [8].
Also, through the alignment of networks we can identify evo-
lutionarily conserved patterns in biological pathways [9]. The
key to accurate graph comparison is to find a suitable scoring
function that can correctly measure differences between net-
works. Some of the early distance-based methods, including
the Maximal Common Subgraph (MCS) [10, 11] and edit
distance-based [12] methods, focus on the global comparison
of networks. For the MCS method, similarity is measured
based on the percentage of the overall network that the
maximal common subgraph occupies. For the graph edit
distance method, similarity is measured by what it takes to
transform one network into another by substituting, delet-
ing, and inserting nodes and edges. While distance-based
methods provide an intuitive means of comparing graphs,
these comparisons are based on the exact matching of sub-
structures and therefore cannot be generalized to identify
approximate similarities required for the analyses of many
biological networks.

Graphlets are smaller units of subgraphs of distinct sizes.
Graphlet degree distribution has been established as a more-
comprehensive model compared to early graph comparison

BioMed Research International

methods. Graphlet degree distribution is a generalization
of degree distribution of larger networks. In 2006, Przulj
reported that agreement in graphlet degree distribution could
be effectively used to compare biological networks [13]. This
distribution is calculated as the number of nodes attached
to each of a predefined number of graphlets. Due to the
topological differences of nodes on graphlets, connections
at unequal positions of graphlets are considered different
attachments. For example, for the 30 predefined graphlets in
Przulj’s study, there are 73 types of attachments (also known as
orbits), which give rise to 73 distributions, one for each orbit.
Given two networks for a particular orbit, the distribution
agreement of the orbit is the inverse of the Euclidean distance
between the two distributions. The distribution agreement
between two networks is the arithmetic or geometric mean of
the distribution agreement of all orbits. The graphlet degree
distribution method was the first of a group of graphlet-based
methods. The concepts of graphlet degree and the measure-
ment of similarity by graphlet degree vectors provide the
foundation for the subsequent graphlet-based comparison
methods, including GRAph ALigner (GRAAL) [14] and its
variations, H-GRAAL [15] and MI-GRAAL [16], discussed
later in this review.

Like the graphlet degree distribution method that uses
graphlets to compare PPI networks, graph kernels decompose
networks into subunits and use the subunit information to
calculate PPI network similarities.

2.1. Graph Kernels. As proposed by Haussler, graph kernels
can be viewed as special cases of R-convolution kernels [17].
Graph kernels can offer an analysis of networks by comparing
nontrivial substructures. A fundamental issue in graph com-
parison is the problem of subgraph isomorphism. In this case,
given two graphs, G and H, for example, we need to determine
whether G contains a subgraph that is isomorphic to H.
Subgraph isomorphism is proven to be NP-complete, which
presents a large challenge with respect to computational
complexity and run time. In the context of graph kernels, in
order to accurately compare two PPI networks, an exhaustive
comparison of all of their subgraphs is needed. However, per-
forming such a comparison using graph kernels requires the
same computational complexity as subgraph isomorphism.
Therefore, a key reason for using graph kernels is to closely
approximate an exhaustive comparison while maintaining
computational tractability. Among various graph kernels,
walk-based kernels [18, 19] compare graphs by counting the
number of matching walks within two input graphs. A walk is
asequence of edges from the graph that connect to a sequence
of vertices. Vertices are allowed to repeat in a walk but not in
a path. Path-based kernels [20] use paths instead of walks to
avoid “tottering” problems related to walk-based kernels (i.e.,
high similarity values resulting from cycles or loops in the
graphs). On the other hand, subtree kernels compare all pairs
of matching substructures in subtree patterns [21, 22]. While
subtrees are more expressive structures compared to paths
or walks, constructing subtrees is computationally expensive.
Here we will highlight a few methods that use fast algorithms
for efficient computation of kernels.

BioMed Research International

In 2005 and 2007, Borgwardt and colleagues proposed
fast algorithms for computing random walk kernels [8, 23].
This type of computation performs random walks on graphs
in order to decompose these graphs into multiple paths and
compute the number of matching paths. Various incarnations
of these kernels use different metrics for computing simi-
larities between paths [18, 23], but performance issues when
computing large networks plague almost all of these kernels.
As a noteworthy advancement, Borgwardt and colleagues
introduced the fast random walk kernel that increases the
speed of performance to up to three orders of magnitude.
In Borgwardt’s method, the kernel is defined by the product
graph, which is a composite graph whose nodes are tuples
of vertices from each network. Edges exist only if the corre-
sponding vertices are adjacent in both networks. Three effi-
cient schemes are utilized to decrease the computation time.
These schemes include reducing the kernel to the problem of
solving a generalized Sylvester equation [24], using the conju-
gate gradient methods to solve the kernel and implementing
a fixed-point iteration method to speed up the computation
time [25].

Given that decomposing networks to small substructures
is an expensive process, many state-of-the-art graph kernels
do not scale to large graphs. To address this issue, in 2009
Shervashidze and colleagues proposed a statistical approach
to compare graphs based on the distribution of graphlets [26].
Here, the graphlet kernel is calculated as the product of the
graphlet distribution vectors. Graphlet distribution could be
used to represent the distribution of the graph, especially
when the graph is large. Given that the exhaustive enumera-
tion of graphlets is prohibitively expensive, two theoretically
grounded alternatives have been proposed. First, sampling a
fixed number of graphlets suffices to bind the deviation of
the empirical estimates of the graphlet distribution from the
true distribution. Second, for graphs of a bounded degree, the
exact number of all graphlets of size k can be determined
at a computational complexity that is close to polynomial
time. Because the sampling technique of graphlet kernels is
independent of the graph size, graphlet kernels are scalable
to larger graphs.

In 2007, Shervashidze and colleagues proposed another
algorithm for fast computation of subtree kernels [27]. The
fast subtree algorithm is built upon the Weisfeiler-Lehman
test of isomorphism [28]. The key idea of this algorithm is to
first assign the nodes with a sorted set of labels from neigh-
boring nodes and then compress this sorted set of labels to
short labels. Given the limited range from elements of the
set, this method applies a counting sort on the set of labels
to achieve linear complexity. Not only is the runtime reduced,
but also the accuracy of fast subtree kernel is competitive with
state-of-the-art kernels on several graph classification bench-
mark data sets. Following the fast subtree kernel, a family of
Weisfeiler-Lehman kernels was later designed [29], includ-
ing the Weisfeiler-Lehman edge kernel and the Weisfeiler-
Lehman shortest path kernel. In terms of runtime on large
graphs, these kernels outperform other kernels, including the
recently developed random walk kernels [8] and graphlet
kernels [26].

Graph kernels bridge the gap between graph-structured
data and a large spectrum of machine-learning algorithms
[29]. Graph kernels have quickly developed into an indepen-
dent branch of graph-mining methods and are widely used
in various areas such as computational biology and social
network analysis. Nevertheless, with a single value being
produced as a result of the comparison, graph kernels cannot
provide detailed information on the node or edge mapping.
On the other hand, graph alignment methods are designed to
address the above limitations in graph kernel methods. Graph
alignment methods can provide a more in-depth knowledge
of the comparison, with the tradeoff being a longer processing
time.

2.2. Graph Alignment Methods. Graph alignment is the pro-
cess of mapping nodes and edges between graphs such that
conserved subgraphs can be identified. Graph alignment
adopts a similar concept as that used for sequence alignment.
However, in contrast to sequence alignment, which aligns
linear sequences to identify regions of similarity, graph
alignment must be able to handle data from multiple dimen-
sions of the graph. Graph alignment involves a subgraph
isomorphism test that is proven to be NP-complete. Similar to
graph kernels, getting an exact solution for graph alignment is
not feasible for even moderate sized graphs. Thus, most graph
alignment methods resort to heuristic solutions to reduce the
cost of computation.

Similar to sequence alignment strategies, graph align-
ment can be local or global. Local graph alignment matches
nodes and edges to maximize the local alignment score.
In 2006, Koyuturk and colleagues proposed a local align-
ment framework for PPI networks based on the duplica-
tion/divergence evolutionary model [7]. In this framework, in
a given pair of PPI networks, the alignment score between two
PPI networks is calculated based on matches, mismatches,
and duplications. This method is heuristic-based and aims to
locate all maximal protein-subset pairs such that the align-
ment score is locally maximized. Another example of local
alignment is the modular subgraph alignment algorithm [30],
where each larger network is decomposed into a collection of
smaller subnetworks in order to compute the alignment of the
two networks as the optimal alignment of the subnetworks.

A series of NetworkBLAST algorithms have been
reported for the global alignment of networks. For example,
PathBLAST [9] is the first one of such algorithms to search
for high-probability pathway alignments between two PPI
networks [31]. A later version, NetworkBLAST [32, 33],
constructs a general framework for comparing more than two
protein networks in order to search for conserved patterns
such as shortlinear pathways and dense clusters of complexes.
This search algorithm exhaustively identifies high scoring
subnetwork seeds and uses them to expand the search. Net-
workBLAST is an exhaustive approach and is limited in its
application to the alignment of only up to three networks,
while an extended version, NetworkBLAST-M, can handle
multiple networks [34]. NetworkBLAST-M progressively
constructs a layered alignment graph, with each layer corre-
sponding to a network. Connections between layers indicate

similar proteins across different protein networks. The set of
potentially orthologous proteins is represented by a subnet,
which includes a vertex from each of the layers. Network-
BLAST-M computes a local alignment by readily finding
subnets of high, local conservation based on inferred phy-
logeny. With the novel representation of a layered alignment
graph, NetworkBLAST-M can achieve dramatic reductions
in run time and memory requirements for multiple network
alignments.

Other methods use biological features of interacting
proteins for graph alignment. For example, using integer
quadratic programming, Li and colleagues proposed a PPI
alignment algorithm in 2006 based on similarities in both
the protein sequence and network architecture [35]. In this
method, the alignment of PPI networks is formulated as a
combination of the sequence similarity score of proteins and
the matching score of protein interactions. A coefficient is
introduced to balance the weight between the node and edge
similarity of the networks. Integer quadratic programming
is used to maximize the alignment score among all feasible
combinations of matching scores. Nodes without alignment
gaps are selected to construct a minimally connected sub-
graph within each network; these subgraphs are regarded as
conserved patterns.

The GHOST alignment method [36] developed by Patro
and Kingsford uses the spectrum of the graph adjacency
matrix to measure topological similarities between networks.
GHOST performs a global network alignment using a two-
phased approach. The first phase employs a seed-and-extend
strategy to align high scoring node pairs with their neighbors,
which is similar to the way that BLAST functions [5]. The
second phase uses a local search method to realign nodes
in order to achieve better topological or biological quality.
NETAL is another global graph alignment method that
was developed by Neyshabur and colleagues [37]. NETAL
constructs an alignment score matrix and uses a broad search
to find the best alignment between networks. The alignment
score matrix is constructed from the similarity and interac-
tion score matrices. The similarity score matrix indicates both
topological and biological similarities between nodes; the
interaction score matrix represents the approximated number
of conserved interactions incident to the nodes. During
the process of a broad search, node pairs with maximum
alignment scores are selected and aligned. As a result, the
interaction score matrix is updated, which in turn impacts
the alignment score matrix. The process continues until all of
the nodes of one network are aligned to at least some nodes
of the other network.

GRAAL (GRAph ALigner) is a global alignment method
based solely on the network topology [14]. For each node in
a network, a vector of “graphlet degrees” is used to record
the number of each kind of graphlet that the node touches.
Signature similarity is computed as the distance between two
vectors. Alignment of two networks is completed by matching
pairs of nodes originating in different networks based on the
similarity of their signatures. Although this algorithm oper-
ates based on local alignment, it produces global alignment
results. H-GRAAL, which is a variation of GRAAL [15], uses
the Hungarian algorithm to solve assignment problems and

BioMed Research International

determine the optimal alignments between networks. Given
the cost of aligning two nodes, the Hungarian algorithm
locates the assignment of all pairs of nodes that yield a min-
imized total cost of alignment. Additionally, there are other
graphlet-based alignment algorithms including MI-GRAAL
[16] and the latest C-GRAAL [38]. Like GRAAL, MI-GRAAL
is a seed-and-extend approach. However, unlike GRAAL and
H-GRAAL, which are purely based on topological informa-
tion, MI-GRAAL can integrate any type of similarity mea-
sures into the model. From these similarity measures, MI-
GRAAL computes the alignment confidence score between
pairs of nodes. High scoring pairs are inserted into a priority
queue and used as seeds during the alignment. Similar to
GRAAL and MI-GRAAL, C-GRAAL also uses a seed-and-
extend approach. In contrast to GRAAL, which is based
on graphlet degree information, C-GRAAL aligns networks
based on common information of neighboring graphlets.

Regardless of if the calculation is for local or global align-
ments, performing efficient and accurate alignments on mul-
tiple networks continues to be challenging. Nevertheless, the
Graemlin algorithm was the first algorithm capable of per-
forming scalable, multiple network alignments [39]. Graem-
lin starts from pairwise network alignments. It uses a seed-
and-extend algorithm to first identify clusters of proteins as
“seeds,” and then it broadly extends the alignment to yield
a maximal increase in alignment score. In aligning multiple
networks, Graemlin successively aligns the closest pair of net-
works obtained from the pairwise alignment phase, resulting
in the construction of new networks from the alignments. In
practice, Graemlin avoids an exponential run time because
the constructed networks have small overlaps. The newer
version, Graemlin 2.0 [40], is a global alignment algorithm
that can adjust scoring function parameters and perform
multiple network alignments.

IsoRank [41] is another multiple network alignment
method that aims to correspond nodes and edges of input
networks to maximize the global “match” between PPI net-
works. The maximum match is a combination of the following
two factors: (1) the size of the common graph determined by
mapping and (2) the aggregate sequence similarity between
nodes mapped to one another. The IsoRank algorithm first
associates a functional similarity score with each possible
match between nodes of two networks. Functional similarity
shapes the tradeoff between the twin objectives of topological
overlapping and high sequence similarity between mapped
nodes. This similarity is resolved through eigenvalue com-
putation. In the second stage, mappings between networks
are extracted from the functional similarity scores. To align
multiple networks, the above processes are repeated for each
pair of networks. An improved version of IsoRank, IsoRankN
[42], was developed to perform more efficient and highly
accurate global alignments over multiple networks. Through
the use of spectral partitioning algorithm, IsoRankN can
find dense, clique-like clusters that are considered conserved
regions among the networks.

As a summary of graph comparisons, we have reviewed
an array of methods from early single-feature, distance-based
algorithms to the most current multiple network alignment
graphs. Early distance-based algorithms are founded on strict

BioMed Research International 5
TABLE 1: A summary of graph comparison methods by the strategy employed.
Methods Comparison strategy Spec1ﬁcat1(.)n)) References
Local Global Pairwise Multiple
MCS Distance-based X X [10,11]
Editing distance Distance-based X X [12]
Graphlet Graphlet X X [13]
Fast random walk kernel Graph kernel X (8]
Graphlet kernel Graph kernel X [26]
Fast subtree kernel Graph kernel X [27]
Weighted alignment Graph alignment X X (7]
Substructure-based alignment Graph alignment X X [30]
Class of NetworkBLAST Graph alignment X X X [9, 31-34]
Quadratic programming Graph alignment X X [35]
Class of GRAAL Graph alignment X X [14-16, 38]
Class of Graemlin Graph alignment X X [39, 40]
Class of IsoRank Graph alignment X X [41, 42]
GHOST Graph alignment X [36]
NETAL Graph alignment X [37]

matching of network structures, and thus these algorithms
are only suitable for simple network comparisons. Graph
kernels compare graphs by decomposing and comparing
graph substructures, which are based on well-supported
statistical analyses and mathematical derivations. This results
in more accurate and meaningful comparisons, particularly
for approximate structural similarities. However, with a
single value being produced as the comparison result, graph
kernels cannot provide substantial internal details for the
comparison, such as the node and edge mapping. Therefore,
graph kernels are most suitable for solving classification
problems for small to medium sized graphs. For large sized
graph comparison, graph kernels are at disadvantage, because
on one hand the kernel calculations are very time consuming
for large networks and on the other hand the calculated values
are less informative than those of smaller sized networks. To
perform detailed comparisons of networks, graph alignments
are preferred. Local alignments align subnetworks to max-
imize the local alignment score. Global alignments, on the
other hand, focus on maximizing the overall alignment score.
While local alignments may be ambiguous, global alignments
typically produce unique mapping between nodes. In recent
years, several multiple network alignment methods have
been developed. Compared to pairwise alignments, multiple
network alignment methods provide greater proof of con-
servation of the identified subnetworks. Graph alignments
are very effective for network comparison and identifica-
tion of conserved regions in networks. However, due to
the multidimensional nature and complexity of graph data,
graph alignment algorithms rely on heuristics to derive the
optimal solution. The drawbacks in graph alignments are that
different heuristics usually result in very different solutions
and there are no standards or benchmarks like those available
for sequence alignment.

A summary of different strategies used for graph com-
parisons is provided in Table 1. Here, the first column lists
the name of the method, and the second column specifies

the comparison strategy used. The third column annotates
the methods with keywords such as local, global, pairwise,
or multiple. Local versus global indicates if the method is for
local graph alignment or global graph alignment. Pairwise
versus multiple indicates if the method is a pairwise graph
comparison or a multiple graph comparison. The last column
of the table refers to the reference number listed in the
reference section of this paper.

3. Module Detection Strategies

One of the most important applications of biological network
analysis is the identification of functionally relevant modules
in PPI networks. Similar to social networks and internet-
based networks, PPI networks are conjectured to exhibit a
power law degree distribution [43]. Proving that PPI net-
works follow a power law degree distribution requires more
rigorous statistical data analysis than that available today
[44]; however, it is clear that the connectivity of the PPI net-
works is centralized around a small number of hub nodes.
Such a connectivity pattern indicates that the subgraphs
(modules) centered on these hub nodes are important for
accomplishing specific biological functions. These modules
may be mapped to biological pathways or physically interact-
ing complexes. A variety of module detection algorithms exist
in the literature. Here, we review the following five methods
on module detection: (1) seed-and-extend, (2) hierarchical
clustering, (3) optimization-based, (4) probabilistic, and (5)
frequent subgraph methods. Many of these methods are also
discussed in a recent review on community detection in
graphs by Fortunato [45]. In our paper, we also discuss our
recently published work on frequent subgraph method for
detecting common functional modules among multiple PPI
networks involved in nine different cancers [3].

3.1 Seed-and-Extend Approaches. Seed-and-extend
approaches predict functional protein modules based on

the density of PPI networks. The functional modules are
generally initiated from single nodes deemed as central nodes
or “seeds,” and new nodes are added to “extend” the sub-
networks. Different algorithms have specific metrics for
determining when the subnetworks will reach convergence.

The first seed-and-extend approach we will review is
Molecular Complex Detection (MCODE). This method
detects densely connected regions in large PPI networks that
may represent molecular complexes [6]. MCODE generates
weights for all vertices based on their local network density
and identifies high weight seed proteins. Seeds are expanded
outwards by including vertices in complexes whose weights
are above a given threshold. This process continues until
no more vertices can be added to the complex. The Speed
and Performance in Clustering (SPICi) method [46] is
another seed-and-extend algorithm used for clustering large
biological networks. SPICi uses a heuristic approach to build
clusters from an initial seed-connected pair of vertices (S)
with the highest weight degrees. During the expansion stage,
SPICi searches for a vertex with the maximum value of
support amongst all the nonclustered vertices adjacent to S.
The procedure is repeated until all vertices in the graph are
clustered.

Both the MCODE and SPICi methods are purely based
on network topology. In contrast, Maraziotis and colleagues
presented a new method that discovers functional modules
from weighted graphs [47]. These modules are obtained by
clustering proteins according to their gene expression profiles
and then measuring the distances between clusters. First, the
seed proteins are selected from complexes that have at least six
members and more than 80% data coverage. The neighbors
of the seed protein are sorted in a descending degree of
significance, and this subset of nodes is named the kernel.
Adjacent nodes are iteratively added to the selected kernel.
Still, of all the seed-and-extend methods, SPICi is the most
useful to cluster larger networks due to its efficient memory
utilization algorithm [46].

3.2. Hierarchical Clustering. Hierarchical clustering is
another group of clustering algorithms widely used for bio-
logical data analysis. Hierarchical clustering methods are
often applied to gene expression data to determine coex-
pressed genes, clusters, and outliers [48]. Hierarchical
clustering methods can also be applied to PPI networks to
identify potential modules from within the networks. Similar
to seed-and-extend methods, hierarchical clustering algo-
rithms assume the unbalanced distribution of nodes and
edges in networks. These methods hierarchically group
objects based on the distance among the objects.

The Protein Distance Based on Interactions (PRODIS-
TIN) method was developed based on the principle that
the greater the two proteins in a network share common
interactions, the more likely it is that they are functionally
related [49]. Using the number of common and distinctive
interacting members of the two proteins in an interaction net-
work, PRODISTIN computes the functional distance using
the Czekanovski-Dice distance formula [50], which reflects
the symmetrical difference between the two proteins in

BioMed Research International

an interaction network. The distance values are clustered
using a variation of the neighbor-joining algorithm [51] to
generate a hierarchical tree. In 2004, Lu and colleagues
presented ADJW and Hall clustering algorithms [52]. ADJW
employs the adjacency matrix of the network as the similarity
matrix for the clustering. Densities of the edges between
node groups are computed from the similarity matrix. Using
single linkage clustering, each step clusters two groups having
maximum edge densities into one group. Hall clustering
projects proteins into Euclidian space according to their
connectivity. The Euclidian distances are used as a metric to
measure the topological distance of vertices in the network.
Because the two groups with the smallest sum form a new
group at each step, the groups closer in distance are selected
earlier in the clustering process.

The hierarchical clustering methods discussed above are
agglomerative methods in which the additions of edges are
used to construct hierarchical trees. In hierarchical cluster-
ing, there is another class of methods called divisive methods
that construct hierarchical trees by removing edges. Divisive
methods attempt to find the least similar connected pairs of
vertices from the network of interest and then remove the
edges between the pairs. An example of a divisive method is
Newman and colleagues’ hierarchical clustering for finding
community structures in networks [53]. This method looks
for edges with the highest “betweenness,” where betweenness
is a measure that favors edges that lie between communities
and disfavors edges that lie inside communities. By removing
the edges with highest betweenness, this method divides the
network into smaller components.

Hierarchical clustering methods have primarily focused
on grouping nodes. An unconventional method proposed
by Ahn and colleagues in 2010 focuses on edge clustering
[54]. Rather than assuming that a module is a set of nodes
connected to one another, edge clustering defines modules as
sets of closely interrelated links. Similarity scores are calcu-
lated for each pair of links that share a node; this calculation
is used to build a link dendrogram. An objective function
is defined to compute the link density at each level of the
dendrogram to help determine the best way to cut the tree,
so to speak. Compared to node-based clustering, edge-based
clustering can simultaneously reveal hierarchical and over-
lapping relationships. In another work related to edge-based
clustering, Solava and colleagues proposed a measure of edge
graphlet-degree-vector (GDV) similarity [55]. Edge GDV
counts the number of different graphlets that touch an edge.
Because their extended network neighbors are compared, the
edge GDV of two edges gives a sensitive measure of their
topological similarity. When edge GDV similarity is used to
substitute the original edge similarity measure, as is the case
in Ahn and colleagues’ hierarchical clustering method [54],
the predication accuracy outperforms the original algorithm.

3.3. Optimization Methods. In addition to seed-and-extend
approaches and hierarchical clustering, module detection can
also be formulated as an optimization problem. In 2004,
King and colleagues completed work on predicting protein
complexes via cost-based clustering [56]. Here, the module

BioMed Research International

detection problem is transformed to finding the optimum
partitioning of the network in order to minimize the value of
the clustering cost function. One method, namely, Restricted
Neighborhood Search Clustering (RNSC), is a local search
algorithm based loosely on the Tabu search metaheuristic
[57]. To search for low cost graph partitioning, RNSC uses
a simple integer-valued cost function, referred to as the naive
cost function, as a preprocessor. Next, a more expressive real-
valued cost function, referred to as the scaled cost function,
is used to evaluate clustering. RNSC iteratively moves a node
from one cluster to another in a randomized fashion to reduce
the clustering cost.

Genes with significant changes in expression have imme-
diate and wide interest as markers of disease and the stage of
disease development, as well as markers for a variety of other
cellular phenotypes [58]. Genes with correlated expression
changes in many conditions are likely involved in similar
functions or cellular processes. Such correlated expression
patterns in networks can be uncovered by subnetwork search-
ing. For example, the Cytoscape plug-in jActiveModules
searches for such active subnetworks (i.e., connected regions
of the network that show significant changes in expression
over particular subsets of conditions) [59]. The jActiveMod-
ules method first adopts a statistical scoring system to capture
a change in gene expression for a given subnetwork. Then,
jActiveModules identifies the highest scoring subnetworks,
which are the active modules in the network studied. Because
the problem of finding the maximal-scoring-connected sub-
graph is NP-hard, the heuristic simulated annealing algo-
rithm is used.

In 2010, Zhang and colleagues introduced a new method
that uses graph modularity density to detect functional
modules in PPI networks [60]. Graph modularity measures
the fraction of edges in the network that connect vertices of
the same type (community) against the expected value of con-
nections in a random network. The larger the value of mod-
ularity density is, the more accurate the partition would be.
Therefore, the community detection problem can be viewed
as a problem of finding a network partition that has maximal
modularity density. The optimization problem of finding
maximized modularity density is first attempted using the
simulated annealing (SA) technique. SA allows one to com-
plete an exhaustive search of networks and minimize the
problem of finding suboptimal partitions. The result of run-
ning SA over modularity and modularity density shows that
maximizing the density can provide more detailed and valid
results.

HOTNET, published by Raphael’s lab in 2011, is another
framework for de novo identification of significantly mutated
subnetworks [61]. HOTNET first formulates an influence
measure between pairs of genes based on their topological
relationships in the network. Next, HOTNET builds an influ-
ence graph that incorporates information from only the
mutated genes in the neighboring network. One clear way
to detect significant subnetworks from the influence graph is
to identify sets of nodes that are connected through a high
influence measure and correspond to mutated genes. How-
ever, finding such node sets is a difficult problem that cannot
be solved in polynomial time by any known algorithms.

Alternatively, a computationally efficient approach is based
on the concept of enhancing the influence measure by the
number of mutations observed in each of these genes. Thus,
the strength of connections in the enhanced influence graph
is a function of both the interaction between the nodes and
the number of mutations observed in their corresponding
genes. Next, a threshold is set for the weight of connections,
and the influence graph is decomposed into connected com-
ponents by removing edges with weights smaller than the
threshold. The significance of the subnetworks discovered
depends on the choice of threshold. The computational com-
plexity of the algorithm is linear to the size of the graph.

3.4. Probabilistic Methods. In recent years, probabilistic-
based machine learning methods have been developed and
successfully used in many areas in bioinformatics. Here, we
review a few machine learning methods developed for net-
work module detection. In 2011, Shi and colleagues used a
“semisupervised” method for detecting protein complexes in
PPI networks [62]. This method uses topological features
such as degree statistics, edge weight statistics, clustering
coefficients, and biological features like protein length and
polarity of amino acids to construct a two-layer, feed-forward
neural network. Shi first obtained a weighted PPI network, a
set of known protein complexes, and nonprotein complexes
to set up the training model. Using the initial model, this
method builds new complexes and uses them to train the
model iteratively until no more proteins can be added. PPI
networks typically contain large amounts of false negative
(missing data) and false positive connections. Because neural
networks are regarded for their high tolerance for noisy data,
this method offers a suitable model for PPI module detection.
In 2008, Qi and colleagues presented a Bayesian network
(BN) algorithm for detecting protein complexes from PPI
networks [63]. In this supervised learning approach, a prob-
abilistic Bayesian network mimics each complex subgraph.
Specific topological and biological features are selected for
representative properties of the protein complex. These fea-
tures include node size, degree statistics, edge weight statis-
tics, and protein weight or size statistics. Another method, the
Markov Clustering Method (MCL), is based on the probabil-
ity of landing on different vertices through random walks in
the network [64]. The premises underlying MCL are that (1)
the number of paths between two vertices is larger when the
two vertices belong to the same cluster and (2) random walks
have a higher probability of traversing within the same cluster
than traversing across different clusters. The algorithm starts
by creating a Markov matrix, which is an adjacency matrix
normalized to 1. Two operators, expansion and inflation, are
then used iteratively to recompute the transition probabilities.
Expansion corresponds to matrix multiplication, which is
responsible for creating new edges, while inflation increases
the contrasts between existing differences of probability. The
iterative process converges quickly, and the resulting matrix
represents a nonoverlapping cluster of the network.

3.5. Frequent Subgraph Methods. Most module detection
algorithms are based on either network connectivity or

8 BioMed Research International
TABLE 2: A summary of module detection methods by the strategy employed.
Methods Module detection strategy Specification References
Topological Both
MCODE Seed-and-extend X (6]
SPICi Seed-and-extend X [46]
Kernel set Seed-and-extend X [47]
PRODISTIN Hierarchical clustering X [49]
ADJW and Hall Hierarchical clustering X [52]
Divisive Hierarchical clustering X [53]
Edge clustering Hierarchical clustering X [54, 55]
RNSC Optimization X [56]
jActiveModules Optimization X [59]
Modularity density Optimization X [60]
HOTNET Optimization [61]
Semi-supervised Probabilistic [62]
Bayesian network Probabilistic [63]
MCL Probabilistic [64]
Frequent subgraph Frequency-based method [3, 67, 68]

the density of subgraphs. In contrast, we recently developed
a novel method that predicts functional modules based on
the frequency of subgraphs [3]. We compared nine cancer
PPI networks to identify common and frequent substructures
among the networks. Given their unusual frequency in multi-
ple cancer-related PPI networks, these substructures strongly
appear to be functionally relevant to cancer. Our method
begins with assigning canonical labels to subgraphs, where
subgraphs with the same canonical labels are isomorphic to
one another. Starting from small sized subgraphs, the canon-
ical labels are compared, and infrequent edges are pruned
from the networks. Frequent and common substructures are
recorded and included in the search for larger sized modules.
The process iterates as the subgraph size increases until no
more substructures can be discovered. From the nine cancer
PPInetworks, frequent and common substructures have been
discovered from two to ten edges. Gene Ontology (GO)
semantic similarity scores of the substructures discovered
have been compared with those of randomly generated
patterns [65]. Common substructures exhibit significantly
higher scores compared to random substructures at all edge
levels, indicating that the discovered subgraphs are func-
tionally significant. A survey of frequency-based subgraph
mining algorithms was previously reviewed by Jiang and col-
leagues [66]. In general, Apriori-based approach and pattern
growth approach are the two major groups of algorithms
for identifying frequent subgraphs. Apriori-based algorithms
such as FSG [67] generate candidate subgraphs of larger
size by joining two smaller subgraphs. On the other hand,
pattern growth approach [68] extends patterns directly from
a single pattern, instead of joining two smaller subgraphs.
Nevertheless, both groups of algorithms are restricted by the
graph size due to the subgraph isomorphism problem.

In summary, we reviewed multiple methods for module
detection. The performance of each of these methods varies.
In Brohee and colleagues’ review paper, the performance
of MCL, RNSC, and MCODE is compared in terms of

robustness, sensitivity, and the results of clustering [69]. In
general, RNSC and MCL outperform the MCODE under
most conditions. Similarly, Dhara and colleagues performed a
comparative behavioral analysis of RNSC and MCL on power
law distribution graphs [70]. According to their analysis,
RNSC is preferred to MCL in terms of both cost and quality.

Among the numerous methods for module detection,
different metrics are used to evaluate the weights of modules.
Some metrics are based on the connectivity density, such as
MCODE and edge clustering, while some are based on vertex
scoring, such as RNSC and jActiveModules. Seed-and-extend
methods such as MCODE and SPICi assume that hub nodes
always exist as the centers of modules. Such assumptions
may limit the types of modules that can be discovered by
seed-and-extend algorithms. On the other hand, hierarchical
clustering algorithms, including both agglomerative and
divisive, do not effectively use the topological information
of the networks. Because the distances between nodes or
edges determine how the clusters are drawn, using different
distance metrics in the algorithm will lead to different clus-
tering results. Optimization methods have their limitations
too. Each run of optimization methods may generate different
results, depending on the initial settings. Therefore multiple
runs of optimization methods are required to achieve a
relatively consistent result. Finally, frequency-based methods
look for recurring patterns in PPI networks. Frequency-
based methods are plagued by the performance issue because
frequent pattern matching involves subgraph isomorphism
tests, and it is proven that subgraph isomorphism problem
is NP-complete.

Table 2 provides a summary of these different methods.
Similar to Table 1, the first and second columns list the name
of the method and module detection strategy, respectively.
The third column annotates each method with specifica-
tions; topological versus both indicates if the method is
purely based on topological information or both topological
and biological information. Depending on the theoretical

BioMed Research International

assumptions and metrics included, these methods are capable
of uncovering substructures that represent specific biological
functions. Deciding which method to use depends on the
specific biological context of the problem.

4. Conclusions

Graph comparison and module detection are two commonly
used strategies for analyzing PPI networks. Among the
algorithms for graph comparisons, graph kernels compare
graphs by decomposing the graphs to nontrivial subunits.
Similarity scores between the graphs can be derived through
comparing these subunits. In contrast to other graph compar-
ison methods, graph kernels have the advantage of speed. In
the development of graph kernels, efficiency is the key issue
addressed. In contrast to graph kernels that can only produce
limited information from the comparison, graph alignment
provides in-depth analysis of the mappings between graphs.
Graph alignment adopts concepts from sequence alignment;
the alignment scores are adjusted to reflect topological or
relational information for the graphs. For the purpose of
graph comparison, graph kernels are suitable for classification
tasks that require high-speed computation and intuitive mea-
surement of distance. Graph alignment methods are suitable
for determining conserved regions between PPI networks.
Note that graph alignments can be local or global, and graph
comparisons can be between two networks (pairwise) or
greater than two networks (multiple).

Among the module detection algorithms, seed-and-
extend methods identify modules by first selecting their core
nodes and then expanding the core nodes with new nodes
that increase the subgraph density. Hierarchical clustering
creates clusters hierarchically based on distances between the
clusters. Optimization-based and probabilistic approaches
use mathematical derivations to determine best scoring mod-
ules. The frequent subgraph approach searches for common
and frequent substructures among PPI networks. Different
methods tackle the problem from different perspectives. For
example, seed-and-extend methods use connection density
and neighboring network information to find heavily con-
nected modules in PPI networks. Hierarchical clustering
methods use distances between nodes or edges as the key
factor for clustering. Optimization-based methods represent
network divisions using mathematical models. Modules are
detected through the optimal division of the network. Prob-
abilistic methods use statistics of graph data to construct
training models and to determine the state transitions of the
algorithm. Finally, for frequency-based algorithms, the fre-
quency of subgraphs becomes the key criterion for detecting
modules. The method selection for graph analysis depends
on the interpretation of the problem and the perspective of
the investigator tackling the problem. As the methods are
developed from different perspectives, they produce com-
plementary views of graph data. The future development of
graph analysis will be likely focused on integrated analysis
using an ensemble of methods because no single method can
perform well for all types of comparisons. Because most of the
interaction network studies require both graph comparison

and module detection, such analyses will benefit from the
integration of methods.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported in part by Grants from National
Institutes of Health [IRO1IGM086533-01A1 to CG] and startup
funds to CG from University of Nebraska Medical Center. The
authors also thank Ms. Melody Montgomery at the UNMC
Research Editorial Office for help in the professional editing
of this paper.

References

[1] T. Tto, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y.
Sakaki, “A comprehensive two-hybrid analysis to explore the
yeast protein interactome;” Proceedings of the National Academy
of Sciences of the United States of America, vol. 98, no. 8, pp.
4569-4574, 2001.

[2] Y.Ho, A. Gruhler, A. Heilbut et al., “Systematic identification of
protein complexes in Saccharomyces cerevisiae by mass spec-
trometry, Nature, vol. 415, no. 6868, pp. 180-183, 2002.

[3] R. Shen, N. C. W. Goonesekere, and C. Guda, “Mining func-
tional subgraphs from cancer protein-protein interaction net-
works,” BMC Systems Biology, vol. 6, supplement 2, 2012.

[4] R. Sharan and T. Ideker, “Modeling cellular machinery through
biological network comparison,” Nature Biotechnology, vol. 24,
no. 4, pp. 427-433, 2006.

[5] S.E Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basiclocal alignment search tool,” Journal of Molecular Biology,
vol. 215, no. 3, pp. 403-410, 1990.

[6] G. D. Bader and C. W. V. Hogue, “An automated method
for finding molecular complexes in large protein interaction
networks,” BMC Bioinformatics, vol. 4, no. 1, p. 2, 2003.

[7] M. Koyutiirk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpank-
owski, and A. Grama, “Pairwise alignment of protein interac-
tion networks,” Journal of Computational Biology, vol. 13, no. 2,
pp. 182-199, 2006.

[8] K. M. Borgwardt, H. P. Kriegel, S. V. N. Vishwanathan et al.,
“Graph kernels for disease outcome prediction from protein-
protein interaction networks,” in Proceedings of the Pacific Sym-
posium on Biocomputing., pp. 4-15, 2007.

[9] B.P Kelley, B. Yuan, E. Lewitter, R. Sharan, B. R. Stockwell, and
T. Ideker, “PathBLAST: a tool for alignment of protein interac-
tion networks,” Nucleic Acids Research, vol. 32, pp. W83-W88,
2004.

[10] H.Bunke and K. Shearer, “A graph distance metric based on the
maximal common subgraph,” Pattern Recognition Letters, vol.
19, no. 3-4, pp. 255-259, 1998.

[11] M.-L.Fernandezand G. Valiente, “A graph distance metric com-
bining maximum common subgraph and minimum common
supergraph,” Pattern Recognition Letters, vol. 22, no. 6-7, pp.
753-758, 2001.

10

[12] A. Sanfeliu and K.-S. Fu, “A distance measure between attrib-
uted relational graphs for pattern recognition,” IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 13, no. 3, pp. 353-
362,1983.

[13] N. Przulj, “Biological network comparison using graphlet
degree distribution,” Bioinformatics, vol. 23, no. 2, pp. e177-el83,
2007.

[14] O. Kuchaiev, T. Milenkovi¢, V. MemiSevi¢, W. Hayes, and N.
Przulj, “Topological network alignment uncovers biological
function and phylogeny,” Journal of the Royal Society Interface,
vol. 7, no. 50, pp- 1341-1354, 2010.

[15] T. Milenkovi¢, W. L. Ng, W. Hayes, and N. Przulj, “Optimal net-
work alignment with graphlet degree vectors,” Cancer Informa-
tics, vol. 9, pp. 121-137, 2010.

[16] O. Kuchaiev and N. Przulj, “Integrative network alignment
reveals large regions of global network similarity in yeast and
human,” Bioinformatics, vol. 27, no. 10, Article ID btrl27, pp.
1390-1396, 2011.

[17] D. Haussler, “Convolutional kernels on discrete structures,”
Technical Report UCSC-CRL-99-10, Computer Science
Department, Santa Cruz, Calif, USA, 1999.

[18] T. Girtner, P. Flach, and S. Wrobel, “On graph kernels: hardness
results and efficient alternatives,” in Proceedings of the I6th
Annual Conference on Learning Theory and 7th Kernel Workshop
(COLT/Kernel 03), pp. 129-143, August 2003.

[19] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized Kernels
Between Labeled Graphs,” in Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML "03), pp. 321-328,
Washington, DC, USA, August 2003.

[20] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on
graphs,” in Proceedings of the 5th IEEE International Conference
on Data Mining (ICDM ’05), pp. 74-81, November 2005.

[21] P.Mahé and J.-P. Vert, “Graph kernels based on tree patterns for
molecules,” Machine Learning, vol. 75, no. 1, pp. 3-35, 2009.

[22] J.Ramon and T. Gartner, “Expressivity versus efficiency of graph
kernels,” in Proceedings of the Ist International Workshop on
Mining Graphs, Trees and Sequences, pp. 65-74, 2003.

[23] K. M. Borgwardt, C. S. Ong, S. Schonauer, S. V. N. Vish-
wanathan, A. J. Smola, and H.-P. Kriegel, “Protein function
prediction via graph kernels,” Bioinformatics, vol. 21, no. 1, pp.
147-i56, 2005.

[24] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, “Solution
of the Sylvester matrix equation AXB'+CXD” = E? ACM
Transactions on Mathematical Software, vol. 18, no. 2, pp. 223-
231, 1992.

[25] J. Nocedal and S. J. Wright, Numerical Optimization, Springer
Series in Operations Research, Springer, 1999.

[26] N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri et al., “Effi-
cient graphlet kernels for large graph comparison,” in Proceed-
ings of the International Workshop on Artificial Intelligence and
Statistics, vol. 5, 2009.

[27] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on
graphs,” in Proceedings of the 23rd Annual Conference on Neural
Information Processing Systems (NIPS °09), pp. 1660-1668,
December 2009.

[28] B. Weisfeiler and A. A. Lehman, “A reduction of a graph to a

canonical form and an algebra arising during this reduction,’

Nauchno-Technicheskaya Informatsia, vol. 2, pp. 12-16, 1968.

N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn,

and K. M. Borgwardt, “Weisfeiler-Lehman graph kernels,”

Journal of Machine Learning Research, vol. 12, pp. 2539-2561,

2011.

(29

(30]

(31]

[37]

(38]

(39

(40

(41]

(42]

(43]

(44]

(45]

[46]

BioMed Research International

E Towfic, M. Heather, W. Greenlee et al., “Aligning biomolecular
networks using modular graph kernels,” in Proceedings of the
9th International Conference on Algorithms in Bioinformatics,
pp. 345-361, 2009.

B. P. Kelley, R. Sharan, R. M. Karp et al., “Conserved pathways
within bacteria and yeast as revealed by global protein network
alignment,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 100, no. 20, pp. 11394-11399,
2003.

R. Sharan, S. Suthram, R. M. Kelley et al., “Conserved patterns
of protein interaction in multiple species,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 6, pp. 1974-1979, 2005.

M. Kalaev, M. Smoot, T. Ideker, and R. Sharan, “Network-
BLAST: comparative analysis of protein networks,” Bioinformat-
ics, vol. 24, no. 4, pp- 594-596, 2008.

M. Kalaev, V. Bafna, and R. Sharan, “Fast and accurate align-
ment of multiple protein networks,” Journal of Computational
Biology, vol. 16, no. 8, pp. 989-999, 2009.

Z.1i, Y. Wang, S. Zhang et al., “Alignment of protein interaction
network by integer quadratic programming,” in Proceedings of
the 28th EMBS Annual International Conference, New York, NY,
USA, 2006.

R. Patro and C. Kingsford, “Global network alignment using
multiscale spectral signatures,” Bioinformatics, vol. 28, pp. 3105-
3114, 2012.

B. Neyshabur, A. Khadem, and S. Hashemifar, “NETAL: a new
graph-based method for global alignment of protein-protein
interaction networks,” Bioinformatics, vol. 29, pp. 1654-1662,
2013.

V. Memisevic and N. Przulj, “C-GRAAL: common-neighbors-
based global GRAph ALignment of biological networks,” Inte-
grative Biology, vol. 4, pp. 734-743, 2012.

J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and S.
Batzoglou, “Graemlin: general and robust alignment of multiple
large interaction networks,” Genome Research, vol. 16, no. 9, pp.
1169-1181, 2006.

J. Flannick, A. Novak, C. B. Do, B. S. Srinivasan, and S. Bat-
zoglou, “Automatic parameter learning for multiple local net-
work alignment,” Journal of Computational Biology, vol. 16, no.
8, pp- 1001-1022, 20009.

R. Singh, J. Xu, and B. Berger, “Global alignment of multiple
protein interaction networks with application to functional
orthology detection,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 105, no. 35, pp.
12763-12768, 2008.

C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger, “IsoRankN:
spectral methods for global alignment of multiple protein
networks,” Bioinformatics, vol. 25, no. 12, pp. i253-i258, 2009.

H. Jeong, S. P. Mason, A.-L. Barabdsi, and Z. N. Oltvai, “Lethal-
ity and centrality in protein networks,” Nature, vol. 411, no. 6833,
pp. 41-42, 2001.

M. P. H. Stumpf and M. A. Porter, “Critical truths about power
laws,” Science, vol. 335, no. 6069, pp. 665-666, 2012.

S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3-5, pp. 75-174, 2010.

P. Jiang and M. Singh, “SPICi: a fast clustering algorithm for
large biological networks,” Bioinformatics, vol. 26, no. 8, Article
ID btq078, pp. 1105-1111, 2010.

BioMed Research International

[47] I. A. Maraziotis, K. Dimitrakopoulou, and A. Bezerianos,
“Growing functional modules from a seed protein via inte-
gration of protein interaction and gene expression data,” BMC
Bioinformatics, vol. 8, article 408, 2007.

[48] J. Seo, M. Bakay, P. Zhao et al., “Interactive color mosaic and
dendrogram displays for signal/noise optimization in microar-
ray data analysis,” in Proceedings of the IEEE International
Conference on Multimedia and Expo, vol. 3, pp. 461-464, 2003.

[49] C.Brun, E Chevenet, D. Martin, J. Wojcik, A. Guénoche, and B.
Jacq, “Functional classification of proteins for the prediction of
cellular function from a protein-protein interaction network,”
Genome Biology, vol. 5, no. 1, article R6, 2003.

[50] L. R. Dice, “Measures of the amount of ecologic association
between species,” Ecology, vol. 26, pp. 297-302, 1945.

[51] N. Saitou and M. Nei, “The neighbor-joining method: a new
method for reconstructing phylogenetic trees,” Molecular biol-
ogy and evolution, vol. 4, no. 4, pp. 406-425, 1987.

[52] H. Lu, X. Zhu, H. Liu et al., “The interactome as a tree: an
attempt to visualize the protein-protein interaction network in
yeast, Nucleic Acids Research, vol. 32, no. 16, pp. 4804-48l1,
2004.

[53] M. E. Newman and M. Girvan, “Finding and evaluating com-
munity structure in networks,” Physical Review E, vol. 69, Article
ID 026113, 2004.

[54] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities
reveal multiscale complexity in networks,” Nature, vol. 466, no.
7307, pp. 761-764, 2010.

[55] R.W.Solava, R. P. Michaels, and T. Milenkovic, “Graphlet-based
edge clustering reveals pathogen-interacting proteins,” Bioinfor-
matics, vol. 28, pp. 1480-i486, 2012.

[56] A.D.King, N. Przulj, and I. Jurisica, “Protein complex predic-
tion via cost-based clustering,” Bioinformatics, vol. 20, no. 17, pp.
3013-3020, 2004.

[57] E Glover, “Tabu search. Part I ORSA Journal on Computing,
vol. 1, pp. 190-206, 1989.

[58] R.B. Altman and S. Raychaudhuri, “Whole-genome expression
analysis: challenges beyond clustering,” Current Opinion in
Structural Biology, vol. 11, no. 3, pp. 340-347, 2001.

[59] T.Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel, “Discover-
ing regulatory and signalling circuits in molecular interaction
networks,” Bioinformatics, vol. 18, no. 1, pp. $233-5240, 2002.

[60] S.Zhang, X.-M. Ning, C. Ding, and X.-S. Zhang, “Determining
modular organization of protein interaction networks by maxi-
mizing modularity density,;” BMC Systems Biology, vol. 4, no. 2,
article 10, 2010.

[61] E Vandin, E. Upfal, and B. J. Raphael, “Algorithms for detecting
significantly mutated pathways in cancer;” Journal of Computa-
tional Biology, vol. 18, no. 3, pp. 507-522, 2011.

[62] L. Shi, X. Lei, and A. Zhang, “Protein complex detection
with semi-supervised learning in protein interaction networks,”
Proteome Science, vol. 9, no. 1, article S5, 2011.

[63] Y. Qi, F. Balem, C. Faloutsos, J. Klein-Seetharaman, and Z. Bar-
Joseph, “Protein complex identification by supervised graph
local clustering,” Bioinformatics, vol. 24, no. 13, pp. 1250-i268,
2008.

[64] S. M. V. Dongen, Graph clustering by flow simulation [Ph.D.
thesis], University of Utrecht, 2002.

[65] The Gene Ontology Consortium, “Gene ontology: tool for the
unification of biology,” Nature Genetics, vol. 25, pp. 25-29, 2000.

[66] C.Jiang, F. Coenen, and M. Zito, “A survey of frequent subgraph
mining algorithms,” The Knowledge Engineering Review, vol. 28,
no. 01, pp. 75-105, 2013.

1

[67] M. Kuramochi and G. Karypis, “An eflicient algorithm for dis-
covering frequent subgraphs,” Technical Report, University of
Minnesota, Department of Computer Science, 2002.

[68] X. Yan and J. Han, “gSpan: graph-based substructure pattern
mining,” in Proceedings of the 2nd IEEE International Conference
on Data Mining (ICDM ’02), pp. 721-724, December 2002.

[69] S. Brohée and J. van Helden, “Evaluation of clustering algo-
rithms for protein-protein interaction networks,” BMC Bioin-
formatics, vol. 7, article 488, 2006.

[70] M. Dharaand K. K. Shukla, “Comparative performance analysis
of RNSC and MCL algorithms on power-law distribution,’
Advanced Computing, vol. 3, pp. 19-34, 2012.

